Общество с ограниченной ответственностью «КРЕЙТ автоматизация»

> Управляющий контроллер ПЛК-25-01

Руководство по эксплуатации ПВРТ.421243.001-01 РЭ

Екатеринбург

Содержание

Т	ЕРМИНЫ И СОКРАЩЕНИЯ	4
1	НАЗНАЧЕНИЕ И ФУНКЦИИ	5
2	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ	6
	2.1 Общие характеристики изделия	6
	2.2 Характеристики входов	8
	2.3 Характеристики выходов	9
	2.4 Условия эксплуатации	9
3	КОМПЛЕКТНОСТЬ	.10
4	МАРКИРОВКА	.10
5	УПАКОВКА	.10
6	МЕРЫ БЕЗОПАСНОСТИ	.10
7	МОНТАЖ	.11
8	ПОДКЛЮЧЕНИЕ	.11
	8.1 Подключение питания	.11
	8.2 Подключение к ПК	.12
	8.3 Подключение датчиков к аналоговым входам	.13
	8.4 Подключение исполнительных механизмов к аналоговым выходам	.14
	8.5 Подключение датчиков к дискретным входам	.14
	8.6 Подключение исполнительных механизмов к дискретным выходам	.15
	8.7 Подключение дополнительных модулей к CAN-шине	.15
	8.8 Подключение к RS-485	.16
	8.9 Подключение к Ethernet	.16
9	ИНДИКАЦИЯ И НАЗНАЧЕНИЕ КНОПОК	.17
1	О СТРУКТУРА МЕНЮ	.18
1	1 ЧАСЫ РЕАЛЬНОГО ВРЕМЕНИ	.21
1	2 САМОКОНТРОЛЬ И ЖУРНАЛЫ	.22
1;	3 ЗАЩИТА ИНФОРМАЦИИ	.25
1	4 РЕЖИМЫ РАБОТЫ	.26
1	5 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ	.26
1	6 НАСТРОЙКА И ПРОГРАММИРОВАНИЕ	.27
	16.1 Настройка календаря и часов	.27
	16.2 Настройка дискретных входов	.28
	16.3 Настройка дискретных выходов	.29
	16.4 Настройка аналоговых входов	.30
	16.5 Настройка аналоговых выходов	.31
	16.6 Настройка CAN	.32
	16.7 Настройка RS-485	.34
		2

16.8 Настройка Ethernet	35
16.9 Настройка Modbus	
16.10 Настройка пользовательского и циклического меню	37
16.11 Настройка пользовательского журнала и журнала аварий	
16.12 Настройка меню аварий	37
16.13 Настройка дисплея	37
17 ЭКСПЛУАТАЦИЯ	39
17.1 Установка, изменение и сброс пароля	
17.2 Смена режима работы	
17.3 Работа с дополнительными модулями	40
18 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	40
18.1 Общие указания	40
18.2 Замена элемента питания	40
19 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	42
20 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	42
21 УТИЛИЗАЦИЯ	42
Приложение А Внешний вид ПЛК-25-01	43
Приложение Б Назначение контактов ПЛК-25-01	44
Приложение В Гальваническая развязка в ПЛК-25-01	45
Приложение Г Структура системного меню ПЛК-25-01	46

Настоящее руководство по эксплуатации (далее по тексту – РЭ) распространяется на управляющий контроллер ПЛК-25 **исполнения 01** (далее по тексту – ПЛК, ПЛК-25-01 или контроллер) и предназначено для изучения его конструкции, технических характеристик, принципов работы, методик настройки и эксплуатации.

ПЛК выпускается согласно Техническим условиям ПВРТ.421243.001 ТУ.

Эксплуатационная документация на контроллер состоит из настоящего руководства по эксплуатации и паспорта.

В связи с постоянной работой по совершенствованию изделия, повышающей его надежность, в конструкцию и ПО могут быть внесены незначительные изменения, не отраженные в данном руководстве. Актуальная версия руководства доступна на сайте предприятия-изготовителя по адресу: <u>www.plc25.ru</u>.

Пример обозначения при заказе:

Управляющий контроллер ПЛК-25-01 ПВРТ.421243.001 ТУ

Наименование	
Номер исполнения	
Обозначение документа	

В тексте данного РЭ встречаются ссылки на документы «Управляющий контроллер ПЛК-25. Справочник алгоритмов» ПВРТ.421243.001 СА (далее по тексту – Справочник алгоритмов ПВРТ.421243.001 СА) и «Интегрированная среда разработки прикладных программ «РОМБ-3». Руководство пользователя» ПВРТ.ПК.001.РП (далее по тексту – Руководство пользователя) ПВРТ.ПК.001.РП (далее по тексту – Руководство пользователя).

ТЕРМИНЫ И СОКРАЩЕНИЯ

Термин (сокращение)	Определение (расшифровка)	
БП	Блок питания	
Параметр	Единица данных в ПЛК	
ПК	Персональный компьютер	
ПО	Программное обеспечение	
Прикладная программа*	Программа, загружаемая в ПЛК и представляющая собой совокупность функций и процедур, последовательно выполняемых в соответствии с алгоритмом автомати- зации конкретного объекта управления	
Процедура	Группа функций, объединенных на схеме в блок	
Системные функции	Функции (алгоритмы), необходимые для поддержания работы ПЛК	
Функция (алгоритм)	Часть внутренней программы контроллера (минимальная единица прикладной программы), не доступная для редактирования пользователем	
CAN-BUS	Скоростная децентрализованная промышленная магистраль обмена данными	
ModBus Коммуникационный протокол		
RS-485	Стандарт физического уровня для асинхронного интерфейса	
USB	Universal Serial Bus (универсальная последовательная шина)	
* Устар. – очередь задач		

1 НАЗНАЧЕНИЕ И ФУНКЦИИ

1.1 ПЛК предназначен для работы в составе систем автоматизированного управления технологическим процессом на промышленных предприятиях и в жилищно-коммунальном хозяйстве в качестве программируемого управляющего и обрабатывающего информацию модуля.

1.2 Область применения – системы автоматизированного контроля и управления технологическими процессами на промышленных предприятиях, теплопунктах, теплостанциях, электростанциях, газораспределительных станциях, нефтегазодобывающих предприятиях, предприятиях коммунального хозяйства и в холодильной промышленности в условиях круглосуточной эксплуатации.

1.3 ПЛК поддерживает определенный набор функций (алгоритмов), из которых строится прикладная программа. В набор входят математические, логические, расчетные (преобразовательные), таймерные (временные), регулирующие функции (алгоритмы). Их перечень и описание приведены в Справочнике алгоритмов ПВРТ.421243.001 СА.

1.4 Прикладная программа для ПЛК разрабатывается в Интегрированной среде разработки «РОМБ-3».

1.5 ПЛК выполняет следующие основные функции:

- выполнение прикладной программы;
- измерение и преобразование аналоговых сигналов;
- измерение и преобразование дискретных сигналов;
- прием цифровых сигналов;
- формирование аналоговых сигналов;
- формирование дискретных сигналов;

– прием и передача данных по интерфейсу RS-485 (Modbus-RTU, режим «Master» / «Slave»);

– прием и передача данных по интерфейсу Ethernet (Modbus-RTU поверх TCP, режим «Slave»; FT 1.2A; SNTP для коррекции времени);

- прием и передача данных по шине CAN-BUS;
- часы реального времени и календарь с автономным источником питания (батареей).

1.6 ПЛК выполняет следующие дополнительные функции:

- защита от несанкционированного доступа к настроечным параметрам;
- отображение на дисплее журналов и заданных пользователем событий (аварий);

 отображение на дисплее параметров, заданных пользователем в прикладной программе;

- ввод значений и навигация по меню с помощью клавиатуры.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1 Общие характеристики изделия

2.1.1 Контроллер выпускается в стандартном электротехническом корпусе, предназначенном для шкафного монтажа на DIN-рейку 35 мм.

2.1.2 Внешний вид ПЛК отображен на рисунках А.1 и А.2 в Приложении А, габаритные размеры – в таблице 1. Назначение клемм и наименования сигналов контроллера приведены в таблице Б.1 в Приложении Б.

2.1.3 Функциональная схема контроллера изображена на рисунке 1, общие технические характеристики – в таблице 1. Схема гальванической развязки приведена на рисунке В.1 в Приложении В.

Рисунок 1 – Функциональная схема ПЛК, где 🖉 – наличие гальванической изоляции

Таблица 1 – Краткие технические характеристики ПЛК

Параметр	Значение		
Питание	•		
Количество портов	1		
Дополнительный контакт для резервного питания	Есть		
Напряжение источника постоянного тока	24 B		
Допустимый диапазон изменения напряжения источ- ника постоянного тока	21,626,4 B		
Потребляемая мощность, не более	5 Вт		
Защита от обратной полярности питающего напря-	Есть		
CAN			
Количество портов	 2 × CAN 2.0A: порт CAN для соединения с модулями расширения, обмена и конфигурирования; порт еCAN для обеспечения синхронизации с резервным ПЛК. 		
Скорости передачи	20; 50; 100; 150; 250; 300; 500; 1000 Кбит/с		
RS-485			
Количество портов	1		
Поддерживаемые протоколы	Modbus RTU		
Режим работы Modbus	«Master» / «Slave»		
Скорости передачи	1200; 2400; 4800; 9600; 19200; 38400; 57600; 115200 Кбит/с		
Ethernet	*		
Количество портов	1 × RJ-45		
Поддерживаемые протоколы	Modbus RTU поверх TCP, FT 1.2, SNTP		
Режим работы Modbus	«Slave»		
Скорости передачи	10/100 Мбит/с		
USB (Virtual CC	M-port)		
Тип разъема	mini-USB		
I Іоддерживаемые протоколы	FT 1.2 (по части 5 раздела 1 ГОСТ Р МЭК 870-5-1-95)		
Дисплей			
Подсветка	Есть		
Разрешение	64 × 64 пикселей		
Размеры	40.0 × 56.0 × 8.5 мм		
Размеры рабочей зоны	32.0 × 39.5 мм		
Общие сведения			
Габаритные размеры (длина × высота × глубина)	(105 × 86 × 56) ± 1 мм		
Масса, не более	0.5 кг		
Степень защиты корпуса по ГОСТ 14254	IP20		
Индикация на передней панели	Экран ЖКИ		
Устройство ввода	6-кнопочная мембранная клавиатура		
Средний срок службы	12 лет		
* По запросу			

2.1.4 В верхней и нижней стенках корпуса ПЛК расположены клеммы аналоговых и дискретных входов и выходов (см. рисунок А.1 в Приложении А). Характеристики входов приведены в п. 2.2, а выходов – в п. 2.3.

2.1.5 На передней панели контроллера расположен графический жидкокристаллический дисплей (далее по тексту – дисплей), предназначенный для отображения меню ПЛК и текущих значений параметров (см. рисунок А.1 в Приложении А). Характеристики дисплея приведены в таблице 1. Перемещение по пунктам меню и задание значений параметров осуществляется с помощью шести клавиш, размещенных на передней панели контроллера (подробнее об индикации и функциях клавиш см. в разделе 9).

2.1.6 ПЛК оснащен встроенными часами реального времени (подробнее о часах см. в разделе 11) и календарем.

2.1.7 Средняя наработка на отказ не менее 50000 ч. Критерием отказа является несоответствие требованиям ПВРТ.421243.001 ТУ.

2.1.8 Среднее время восстановления работоспособного состояния объекта после отказа контроллера не превышает 1 ч (без учета времени транспортировки нового ПЛК).

2.1.9 Средний срок службы не менее 12 лет. Критерием предельного состояния является превышение затрат на ремонт свыше 50 % стоимости нового контроллера.

2.2 Характеристики входов

Характеристики входов ПЛК приведены в таблицах 2 и 3. Для подключения к аналоговым входам разрешаются датчики с унифицированным выходным сигналом 4–20 мА, а также датчики сопротивления, формирующие аналоговый выходной сигнал в диапазоне от 0 до 10000 Ом.

Характеристика		Значение
Количество входов		2
Время обновления значений на входах		От 250 мс
Абсолютная погрешность при измерении унифицированных сигналов 4-20 мА		± 0.05 мА
Абсолютная погрешность при измере- нии сопротивления в диапазоне	252000 Ом	± 0.5 Ом
	20009000 Ом	± 10.0 Ом
	025 Ом и 900010000 Ом	Не регламен-
		тируется

Таблица 2 – Технические и метрологические характеристики аналоговых входов

Таблица 3 – Технические и метрологические характеристики дискретных входов

Характеристика	Значение
Количество входов	6
Режим работы	Определение логического уровня
Тип входов	Опто-транзистор
Максимальная измеряемая частота следования импульса	5 кГц
Относительная погрешность при измерении ча- стоты следования импульсов	± 2%
Минимальная длительность импульса	100 мкс
Напряжение «логического нуля»	021,6 B
Напряжение «логической единицы»	21,726,4 B

2.3 Характеристики выходов

Характеристики выходов ПЛК приведены в таблицах 4 и 5.

Таблица 4 – Технические и метрологические характеристики аналоговых выходов

	Характеристика	Значение
Количество вых	2	
Абсолютная генерации тока 4-20 мА (при подключенной нагрузке не более Ом)		± 0.1 мА
	генерации напряжения 0-10 В (при входном сопротивлении подклю- чаемого оборудования более 100 кОм)	± 0.05 B
Напряжение питания выходов		(24 ± 10%) B
Максимально допустимая нагрузка		1000 Ом
Защита от обратной полярности питающего напряжения		Есть

Таблица 5 – Технические и метрологические дискретных выходов

Характеристика	Значение	
Количество выходов	6	
Тип выходов	Открытый коллектор	
Режим работы	 ключ (переключение логического состояния); 	
	 формирование ШИМ-сигнала. 	
Максимальный постоянный ток нагрузки	0.5 A	
Максимальный кратковременный (в течение	2 A	
1 с) ток нагрузки		
Диапазон коэффициента заполнения формируе-	0.0 – 100.0%	
мого ШИМ-сигнала	(не включая 0.0 и 100.0%)	
Диапазон частоты формируемого ШИМ-сигнала	от 0,01 до 100 кГц	
Относительная погрешность формирования ча-	± 2%	
стоты ШИМ-сигнала		
Напряжение источника питания выходов	(24 ± 10%) B	
Минимальная мощность источника питания	Определяется по формуле:	
	$P_{_{\mathrm{HCT}}} = \left(\sum_{j=1}^{6} I_{j}\right) * U_{_{\mathrm{HCT}}} * 1.2,$	
	где $\sum_{j=1}^{6} I_j$ – сумма значений силы тока нагрузки	
	на всех дискретных выходах;	
	Uист – напряжение источника питания дис-	
	кретных выходов.	
Типы защиты выходов	– защита от обратной полярности питающего	
	напряжения;	
	 защита от обратного тока самоиндукции; 	
	– защита от перенапряжения.	

2.4 Условия эксплуатации

Защищенность ПЛК от проникновения воды и внешних твердых предметов соответствует степени защиты IP20 по ГОСТ 14254. Остальные климатические и эксплуатационные характеристики контроллера приведены в таблице 6. Требования к устойчивости ПЛК при воздействии других климатических факторов не предъявляются в соответствии с Примечанием 1 к таблице 1 ГОСТ Р 52931.

Таблица 6 – Условия эксплуатации

Характеристика	Значение
Место размещения	Закрытые помещения без агрессивных паров и газов
Температура окружающего воздуха	От +5 °С до +50 °С (группа исполнения В4 ГОСТ Р 52931)
Относительная влажность воздуха	От 10 до 80 % при 35 °C и ниже, без конденсации влаги (группа исполнения В4 ГОСТ Р 52931)
Частота синусоидальных вибраций	От 10 до 55 Гц (группа исполнения N2 по ГОСТ Р 52931)

3 КОМПЛЕКТНОСТЬ

Комплект поставки контроллера приведен в таблице 7.

Таблица 7 – Комплект поставки

Наименование	Обозначение	Количество
ПЛК-25	ПВРТ.421243.001	1
Паспорт	ПВРТ.421243.001 ПС	1

Примечание — Источник питания для ПЛК и соединительные кабели в комплект поставки не входят и должны приобретаться отдельно.

4 МАРКИРОВКА

4.1 ПЛК имеет следующую маркировку на лицевой панели: логотип предприятия-изготовителя «КРЕЙТ автоматизация», логотип серии «T25» и краткое название контроллера «ПЛК-25».

4.2 ПЛК имеет следующую маркировку на задней панели: заводской шифр изделия, номер исполнения и заводской порядковый номер.

5 УПАКОВКА

5.1 ПЛК упакован в пакет из полиэтиленовой пленки и в коробку из гофрокартона.

5.2 В упаковочную коробку вместе с ПЛК помещен паспорт, уложенный в полиэтиленовый мешок.

5.3 Упаковочная коробка промаркирована манипуляционным знаком «Хрупкое. Осторожно».

6 МЕРЫ БЕЗОПАСНОСТИ

6.1 ПЛК соответствует требованиям безопасности к электрическим изделиям и обеспечивает защиту человека от поражения электрическим током по классу 0 по ГОСТ 12.2.007.0.

6.2 К работе с ПЛК должны допускаться работники из электротехнического персонала, имеющие группу по электробезопасности не ниже III, прошедшие инструктаж по технике безопасности при работе с установками напряжением до 1000 В, ознакомленные с настоящим РЭ и эксплуатационной документацией на программы настройки контроллера.

7 МОНТАЖ

Монтаж ПЛК производится в электротехнический шкаф на стандартную DIN-рейку шириной 35 мм.

Последовательность монтажа контроллера следующая:

 в соответствии с габаритами ПЛК (см. таблицу 1) осуществляется подготовка посадочного места в шкафу электрооборудования (конструкция шкафа должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов);

- ПЛК крепится на DIN-рейку.

Экраны кабелей датчиков должны быть соединены с шиной заземления в одной точке со стороны ПЛК как можно ближе к источнику питания. Со стороны датчиков экраны необходимо оставить свободными.

Монтаж, подключение питания и заземления датчиков следует выполнять в соответствии с требованиями и рекомендациями эксплуатационной документации на данные датчики. В состав шкафа вблизи ПЛК и его источника питания должен входить выключатель или автомат защиты, имеющий маркировку как отключающее устройство. Монтаж и демонтаж ПЛК и его внешних цепей следует проводить при отключенном электропитании самого контроллера и всех подключаемых к нему датчиков.

Для монтажа рекомендуется применять экранированный кабель типа МКЭШ по ГОСТ 10348-80 с необходимым числом жил сечением не менее 0,35 мм² (или аналогичный).

8 ПОДКЛЮЧЕНИЕ

8.1 Подключение питания

Электрическое питание контроллера следует осуществлять от источника постоянного тока (далее по тексту – источник питания, ИП), характеристики которого приведены в таблице 1. Питание подключается к клеммам «Uпит–» и «Uпит+» с соблюдением полярности (расположение клемм см. на рисунке А.1 в Приложении А).

ПЛК обеспечивает функцию резервирования питания. Для подключения резервного питания подайте напряжение 24 В на клеммы «Uпит-» и «+Up» (расположение клемм см. на рисунке А.1 в Приложении А).

8.2 Подключение к ПК

Подключить контроллер к ПК можно двумя способами – по интерфейсу USB (рекомендуемый вариант) и по интерфейсу CAN.

Чтобы **подключить ПЛК к ПК через порт mini-USB**, нужно выполнить следующие действия.

1. Подать питание на контроллер (см. п. 8.1).

2. Подключить ПЛК к USB-порту ПК с помощью mini-USB-кабеля в соответствии с рисунком 2.

Рисунок 2 – Подключение ПЛК к ПК

3. Проверить появление СОМ-порта в Диспетчере устройств ПК. Для этого зайти в «Проводник», правой кнопкой мыши нажать на «Этот компьютер» и выбрать пункт «Управление» (см. рисунок 3). В открывшемся окне нажать на пункт «Диспетчер устройств», а затем найти в нем пункт «Порты (СОМ и LPT)» и щелкнуть по символу «>» рядом с его названием. В открывшемся списке отобразится СОМ-порт подключенного устройства (см. рисунок 4). Если ПЛК не определился в операционной системе ПК виртуальным СОМ-портом, нужно установить драйверы на ПК и/или заменить кабель (кабели) и повторить подключение.

N		Объемные объе
> _ Desk	Свернуть	
> 🔮 Виде	Управление	
> 🔮 Доку	Открепить от начального экрана	
> 🕹 Загр	Подключить сетевой диск	
> 🖂 Изоб	Открыть в новом окне	
> 🎝 Музь	Закрепить на панели быстрого доступа	
> 💼 Объе –	ополючить сетевой диск	[
> 🔚 Лока _	Добавить новый элемент в сетевое окружен	ие
- 2000	Уладить	

Рисунок 3 – Пункт «Управление» во вкладке «Этот компьютер»

Рисунок 4 – ПЛК в списке СОМ-портов

Чтобы **подключить ПЛК к ПК через интерфейс CAN**, необходимо выполнить следующие действия.

1. Подключить к магистрали CAN-BUS контроллер (см. п. 8.7) и адаптер АИ-200 (схему и методику подключения см. в Руководстве по эксплуатации адаптера АИ-200 Т10.00.200 РЭ), а затем соединить USB-порт АИ-200 и USB-порт ПК стандартным кабелем USB – AB.

2. Подать питание на контроллер (см. п. 8.1).

8.3 Подключение датчиков к аналоговым входам

Подключение к универсальным аналоговым входам ПЛК осуществляется согласно рисункам 5 и 6 в зависимости от типа источника сигнала.

Рисунок 5 – Варианты подключения датчиков с токовым унифицированным сигналом:

а) – схема параллельного (четырехпроводного) подключения;

б) – схема последовательного (двухпроводного) подключения

Рисунок 6 – Трехпроводная схема подключения резистивного датчика 0...10 кОм

8.4 Подключение исполнительных механизмов к аналоговым выходам

Подключение к универсальным аналоговым выходам осуществляется согласно рисунку 7 в зависимости от типа источника сигнала.

Рисунок 7 – Схема подключения к аналоговым выходам:

а) – с унифицированным сигналом 4 – 20 мА;

б) – с унифицированным сигналом 0...10 В

8.5 Подключение датчиков к дискретным входам

Подключение к универсальным дискретным входам осуществляется согласно рисунку 8. При этом входы одной и той же группы должны быть подключены по одинаковой схеме.

Рисунок 8 – Варианты подключения датчиков к дискретным входам: a) – с общим «плюсом», б) – с общим «минусом»

8.6 Подключение исполнительных механизмов к дискретным выходам

Подключение к дискретным выходам осуществляется в соответствии с рисунком 9.

Рисунок 9 – Схема подключения нагрузок к дискретным выходам

8.7 Подключение дополнительных модулей к CAN-шине

Подключение осуществляется соединением контактов «CAN L» и «CAN H» с одноименными шинами магистрали в соответствии с рисунком 10. Заводские параметры связи приведены в таблице 8. Максимальное количество приборов в одном сегменте шины CAN-BUS – 30 шт. Протяженность одного сегмента магистрали CAN-BUS при типе подключения точкаточка не должна превышать 100 метров при скорости 300 кБод. При подключении двух и более сегментов, включающих в себя несколько конечных точек, необходимо использовать разделители сегментов магистрали PC-62 (T10.00.62, производства ООО «КРЕЙТ»), выполняющие согласование физических характеристик линии связи и распределенных нагрузок.

Рисунок 10 – Схема подключения ПЛК к САМ-шине

Примечание – На двух контроллерах, находящихся на противоположных концах магистрали, <u>необходимо</u> установить перемычку «TRM», (в ПЛК – «TRM3», расположенная слева от клеммы «CAN L»); на всех остальных преобразователях, подключенных к этой магистрали, перемычки должны быть удалены. Работа системы обмена данными по магистрали, построенной по топологиям типа «Звезда», «Куст» и др. не гарантируется.

Параметр	Значение
Сетевой номер	1
Скорость	300 кБит/с

8.8 Подключение к RS-485

Подключение к ПЛК устройств с интерфейсом RS-485 по протоколу ModBus-RTU осуществляется соединением контактов «RS485 A» и «RS485 B» с одноименными шинами магистрали с помощью кабеля «витая пара» в соответствии с рисунком 11. По умолчанию ПЛК работает в режиме «Master», но может работать и в режиме «Slave» (алгоритм настройки см. в п. 16.9). Рекомендуемое максимальное количество ведомых устройств в магистрали – 30 шт. Заводские параметры связи приведены в таблице 9.

Рисунок 11 – Схема подключения ПЛК к RS-485

Примечание – На двух контроллерах, находящихся на противоположных концах магистрали, необходимо установить перемычку «TRM», (в ПЛК – «TRM2», расположенная справа от клеммы «RS485 A»); на всех остальных преобразователях, подключенных к этой магистрали, перемычки должны быть удалены. Работа системы обмена данными по магистрали, построенной по топологиям типа «Звезда», «Куст» и др. не гарантируется.

|--|

Параметр	Значение
Скорость	9600 кБит/с
Четность	нет
Количество стоп-битов	1

8.9 Подключение к Ethernet

Подключение ПЛК к сети Ethernet осуществляется с помощью стандартного патчкорда. Заводские параметры связи приведены в таблице 10. Скорость в сети устанавливается автоматически на значение 10 или 100 Мбит/с в зависимости от возможностей ЛВС. ПЛК работает в режиме «Slave» по протоколу Modbus-RTU поверх TCP.

Таблица 10 – Заводские параметры сети Ethernet

Параметр	Описание	Значение
IP	IP-адрес	192.168.0.1
Subnet	Маска подсети	255.255.255.0
Gate	Адрес шлюза	0.0.0.0
DNS	Адрес DNS-сервера	0.0.0.0
FTPORT	Номер порта по протоколу FT 1.2	51960 (Dec)
MBPORT	Номер порта по протоколу Modbus	502 (Dec)

9 ИНДИКАЦИЯ И НАЗНАЧЕНИЕ КНОПОК

На рисунке 12 изображена лицевая панель ПЛК, на которой расположены элементы управления (клавиши) и индикации (дисплей). Функционал всех клавиш приведен в таблице 11, а в таблице 12 представлена расшифровка символов, которые могут появляться в строке статуса во время работы контроллера. Ниже этой строки располагаются элементы меню (подробнее о структуре меню см. раздел 10).

Рисунок 12 – Лицевая панель ПЛК

Таблица 11 – Назначение клавиш управления

Клавиша	Назначение
ОК	Выбор пункта меню, изменение параметра, подтверждение изменений
•	Возврат на предыдущий пункт меню, отмена изменений
\odot	Перемещение по пунктам меню вверх/вниз, ввод значений
\odot	Движение по строкам пунктов меню, перемещение по разрядам при вводе значений

Таблица 12 – Описание символов в строке статуса

Символ	Назначение
•	Прибор находится в режиме «Работа», прикладная программа выполняется
11	Прибор находится в режиме «Отладка»
	Прибор находится в режиме «Останов», прикладная программа остановлена
<u>A</u>	В журналах имеются непросмотренные события

10 СТРУКТУРА МЕНЮ

ПЛК имеет четыре вида меню: циклическое, системное, пользовательское и аварий.

Циклическое меню представляет собой последовательно сменяющие друг друга экраны, на которых могут отображаться максимум 2 параметра, выбранных пользователем при настройке (см. рисунок 13). Если длина любой строки (название параметра или его выводимое значение) на экране превышает максимально выводимую (12 символов), то в этой строке отображаются 11 символов + знак «...», а все надписи на экране автоматически пролистываются сначала вправо, пока не дойдут до конца строки, содержащей наибольшее количество символов, а затем влево – до начала строк; после этого выдерживается временной промежуток (величина которого может регулироваться пользователем при настройке циклического меню), затем включается следующий экран (если экранов в циклическом меню два или более). Максимальное количество сменяющихся экранов – 35. Сведения о настройке циклилического меню приведены в п. 16.10.

Рисунок 13 – Циклическое меню

Чтобы перейти в **системное меню** ПЛК из циклического, нужно нажать кнопку «**OK**». Структура системного меню приведена на рисунке Г.1 в Приложении Г, а описание пунктов меню – в таблице 13.

Пункт меню	Вложенный пункт	Описание
Система	Статус	Пункт содержит в себе подпункты, сообщающие об имеющихся неисправностях ПЛК. Об исправности контроллера свидетельствует надпись « OK » напротив пункта, а о неисправности – надпись « ERR »
	Модуль	Номер типа модуля
	Зав.№	Заводской номер прибора
	Версия ПО	Текущая версия ПО прибора
	Загрузчик	Текущая версия ПО загрузчика прибора
	Дата	Текущая дата в формате ДД.ММ.ГГ
	Время	Текущее время в формате ЧЧ:ММ:СС
	Пароль	Пункт установки и отключения пароля
Настройки	Аналог.вх.	Пункт содержит в себе подпункты AIN X (см. рисунок Г1), в каждом из которых отображается информация о конкретном аналоговом выходе: Знач. – текущее измеренное значение на данном входе; Тип – выбранный тип измерений для данного входа.
	Аналог.вых.	Пункт содержит в себе подпункты AOUT X (см. рисунок Г1), в каждом из которых отображается информация о конкретном аналоговом входе: Тип – выбранный тип выхода (0 – токовый, 1 – напряженческий); Знач. – текущее значение, заданное выходу.
	Дискрет.вх.	Пункт содержит в себе подпункты DI X (см. рисунок Г1), в каждом из которых отображается информация о конкретном дискретном входе: Состояние – текущее состояние входа (1 – сигнал есть, 0 – сигнал отсутствует); Ч-та, Гц – текущая измеренная средняя частота на входе.
	Дискрет.вых.	Пункт содержит в себе подпункты DOUT X (см. рисунок Г1), в каждом из которых отображается информация о конкретном дискретном выходе: Состояние — текущее состояние выхода (0 – сигнал отсутствует, 1 – сигнал есть); Ч-та, Гц – заданное значение частоты ШИМ, Гц; К зап, % – заданное значение коэффициента заполнения ШИМ, %; ШИМ вкл. – установка бита включения ШИМ на данном канале (0 – выход работает в режиме ключа, 1 – выход формирует ШИМ сигнал).
	RS485	Настройки интерфейса RS-485: Скорость – заданная скорость обмена в сети RS-485, кБит/с; Четность – контроль четности («нет», «четный», «нечетный»); Стоп бит – заданное количество стоп-битов (1 или 2).
	CAN	Настройки САN-интерфейса: САN номер – заданный сетевой номер прибора на СAN-шине; Скорость – заданная скорость обмена в сети CAN, кБит/с.
	Ethernet	Сетевые настройки Ethernet: IP – заданный IP-адрес; Subnet – маска подсети; Gate – адрес шлюза; FT port – номер порта по протоколу FT 1.2; MODBUS port – номер порта по протоколу Modbus.

Таблица 13 – Структура системного меню ПЛК

Продолжение таблицы 13

Пункт меню	Вложенный пункт	Описание
Настройки	Modbus	Настройки Modbus: Адрес – Modbus-адрес; Ведомый – работа в режиме «Slave» (0 – выключена, 1 – включена)
	Дата/Время	Настройка календаря и часов: Дата – текущая дата; Время – текущее время.
	Дисплей	Настройки дисплея: Подсветка разрешена – текущее состояние подсветки дисплея (0 – запрещена, 1 – разрешена); Т подсветки, мс – заданное время работы подсветки, мс.
Журналы	Системный	Пункт просмотра записей системного журнала: ДД.ММ.ГГ – дата события; ЧЧ:ММ:СС – время события; Категория – категория события; Событие – код события. Первой записью отображается последнее событие, перемещение по событиям происходит вглубь по убыванию даты и времени.
	Вмешательств	Пункт просмотра записей журнала вмешательств: ДД.ММ.ГГ – дата события; ЧЧ:ММ:СС – время события; Событие – код события; Nnap: – номер измеренного параметра. Старое – значение параметра до изменения; Новое – значение параметра после изменения. Первой записью отображается последнее событие, перемещение по событиям происходит вглубь по убыванию даты и времени.
	Пользователь	Пункт просмотра записей пользовательского журнала: ДД.ММ.ГГ – дата события; ЧЧ:ММ:СС – время события; Название – название события (задается произвольно пользователем); Параметр – номер отслеживаемого параметра; Значение – зафиксированное значение параметра во время фиксации события.
	Аварий	Пункт просмотра записей журнала аварий (по виду аналогичны записям пользовательского журнала).
Старт/Стоп	Старт – запускае Стоп – останавли	т цикл выполнения прикладной программы ивает цикл выполнения прикладной программы.
Пользова- тельское	Пункт отображе пользователем че	ения пользовательского меню. Вложенные пункты задаются ерез программу «РОМБ-3» (см. п. 16.10).

Пользовательское меню предназначено для отображения, редактирования и структурирования выбранных пользователем параметров. Пункты этого меню можно вкладывать в друг друга, образуя папки, при настройке с помощью ПО «РОМБ-3» (см. п. 16.10), в результате чего оно представляет собой древовидный список параметров. Максимальное суммарное количество пунктов и папок – 80.

ПЛК предусматривает возможность просмотра пунктов пользовательского меню и редактирования значений входящих в него параметров с лицевой панели контроллера (подробно о функциях клавиш управления см. таблицу 11 в разделе 9).

Если длина любой строки (название параметра + пробел + выводимое значение параметра) на дисплее превышает максимально выводимую (12 символов), то в этой строке отображаются 11 символов + знак «...», а надпись на дисплее автоматически пролистывается сначала вправо, пока не дойдёт до конца строки, а затем влево – до начала строки; затем цикл повторяется.

Меню аварий автоматически прокручивается перед циклическим и представляет собой последовательно сменяющие друг друга экраны, на каждом из которых могут отображаться максимум 5 событий из журнала аварий (подробнее о нем в разделе 12). Отображение названия любого события на экране этого меню ограничено длиной строки (12 символами). Если длина названия события превышает 12 символов, то в этой строке на экране отображаются 11 символов + знак «...» (см. рисунок 14). Максимальное количество сменяющихся экранов – 52. В верхней строке всех экранов данного меню отображается количество аварий в текущий момент времени. Сведения о настройке меню аварий приведены в п. 16.12.

Рисунок 14 – Меню аварий

11 ЧАСЫ РЕАЛЬНОГО ВРЕМЕНИ

При отключенном питании ПЛК питание часов реального времени осуществляется от сменной встроенной батареи типа CR2032. В случае эксплуатации контроллера при температуре на границах рабочего диапазона срок службы батареи сокращается.

Замену батареи рекомендуется производить на предприятии-изготовителе или в авторизованном сервисном центре (инструкция по замене приведена в п. 18.2).

12 САМОКОНТРОЛЬ И ЖУРНАЛЫ

ПЛК имеет систему самоконтроля, которая формирует запись о событии (событиях) в один из журналов – системный, вмешательств, пользовательский и/или аварий.

Просмотр краткой информации событий может выполняться с помощью дисплея прибора – для этого необходимо перейти в пункт «**Журналы**» системного меню и выбрать нужный журнал. Навигация по событиям и их содержимому осуществляется с помощью клавиш (их функционал см. в. разделе 9, в таблице 11). При зажатой клавише «**v**» или «**^**» журналы пролистываются в ускоренном режиме.

Чтение полной накопленной информации из журналов осуществляется с помощью ПО «РОМБ-3» (см. раздел 4.11 Руководства пользователя ПВРТ.ПК.001.РП).

Системный журнал ПЛК построен по принципу кольца и в любой момент может хранить до 7918 последних записей о событиях, к которым относятся начальный запуск программы, включение и отключение питания, сбои в работе ПЛК. Пример отображения записи при просмотре системного журнала с помощью меню контроллера приведен на рисунке 15. В первых двух строках записи фиксируется дата и время формирования записи о возникновении события. В строке Категория отображается порядковый номер категории события, а в строке Событие – шестнадцатеричный код события, который можно посмотреть с помощью кнопки «>». На рисунке 15 число 2 в строке Категория говорит о возникновении события второй категории, а код события 0х0000001А в строке Событие описывает состояние ПЛК в момент отказа оборудования (суммой битов 0х0000002, 0х0000008 и 0х00000010). Расшифровка обозначения событий системного журнала приведена в таблице 14.

Рисунок 15 – Пример записи из системного журнала

Таблица 14	– Расшифровк	а кодов событий системного журнала
Категория	Код	Описание события
1	0x00000000	Запуск после отключения питания;
	0x00000001	Запуск после срабатывания автотаймера;
	0x00000002	Запуск после просадки питания;
	0x0000003	Запуск после сброса;
	0x00000004	Отключение питания
2	0xXXXXXXXX	Регистрация информации о состоянии ПЛК в момент отказа
		оборудования.
		Код такого события представляет собой сумму следующих битов
		состояния:
		0х0000001 – неисправность внутренняя FLASH;
		0x0000002 – неисправность внешняя FLASH;
		0х0000004 – неисправность внешняя RAM;
		0х0000008 – неисправность тактовый генератор (кварц);
		0х0000010 – неисправность часовой кварц;
		0х0000020 – прикладная программа испорчена;
		0х00000040 – параметры прикладной программы испорчены или отсут-
		ствуют;
		0х0000080 – основная область системных параметров повреждена;
		0х0000100 – резервная область системных параметров повреждена;
		0х0000200 – откат системных параметров к заводским настройкам;
		0х0000400 – АЦП не отвечает (неисправен);
		0х0000800 – ЦАП не отвечает (неисправен);
		0х00001000 – попытка записи параметра в несуществующий адрес или
		память;
		0х00002000 – наличие поврежденной(-ых) записи(-ей) в пользователь-
		ском журнале;
		0х00004000 – наличие поврежденной(-ых) записи(-ей) в журнале вмеша-
		тельств;
		0х00008000 – наличие поврежденнои(-ых) записи(-еи) в системном жур-
		0х00010000 – наличие поврежденнои(-ых) записи(-еи) в журнале ава-
		рии;
		0х00040000 – неисправность интерфеиса Ethernet.
3	OXPPPPMILI	Алгоритмическии отказ (в задачах прикладнои программы) – оонаружен
		неизвестный параметр с номером РР РР в памяти с кодом МI LI, где
		МІ – вид памяти (0 – RAM, 1 – ROM), а LI – ее размещение (0 – внут-
4		ренняя, т – внешняя).
4	UXPPPPMILI	Выполнена попытка записи параметра в несуществующии адрес или па-
		мять. РР РР – номер параметра, МТ LT – код памяти, где МТ – вид па-
		мяти (0 – КАМ, Т – КОМ), а LT – ее размещение (0 – внутренняя, Т –
	0.000000000	
5	0x00000000	Получена команда СТОП, NN – предыдущее значение параметра F01A;
		получена команда старт, им – предыдущее значение параметра F01A
6	UXUUUUUUUU	Откат системных параметров к заводским настройкам (не удалось
		восстановить системные параметры из резервнои области системных
	000000000	параметров)
	0x00000002	Выполнено восстановление системных параметров из резервной обла-
		ј сти системных параметров

T-6-ملہ _

Журнал вмешательств ПЛК построен по принципу кольца и в любой момент может хранить до 5164 последних записей, в которых фиксируется дата и время изменения параметра, его номер, а также предыдущее и новое значение.

Пример отображения записи при просмотре журнала вмешательств с помощью меню контроллера приведен на рисунке 16. В первых двух строках фиксируется дата и время формирования записи. В строке **Событие** отображается код события, а в строке **№пар** – номер измененного параметра. Если значение изменено у индексного параметра (в массиве), в строке **№пар** после номера параметра в квадратных скобках будет указан индекс массива, в котором находится этот параметр. В строках **Старое** и **Новое** приводятся старое и новое значения параметра соответственно. На рисунке 16 значения **2** в строке **Событие** и **F01A** – в строке **№пар** говорят о возникновении события с кодом 2 – записи параметра F01A по интерфейсу RS-485, Ethernet или USB. Расшифровка кодов событий приведена в таблице 15.

Рисунок 16 – Пример записи из журнала вмешательств

Код	Расшифровка
1	параметр изменен по интерфейсу CAN
2	параметр изменен по интерфейсу RS-485, Ethernet или USB
6	индексный параметр изменен по интерфейсу CAN
7	индексный параметр изменен по интерфейсу RS-485, Ethernet или USB
8	очистка памяти
9	ввод пароля с дисплея
10	коррекция параметра через меню

Пользовательский журнал ПЛК предназначен для хранения последних 2762 записей о событиях, возникающих в прикладной программе и выбранных пользователем для фиксирования в этом журнале (о настройке пользовательского журнала см. в п. 16.11). Пример отображения записи при просмотре пользовательского журнала с помощью меню контроллера приведен на рисунке 17.

Рисунок 17 – Пример записи из пользовательского журнала или журнала аварий События могут быть выбраны пользователем как аварийные – тогда они фиксируются в **журнале аварий**, который по своему строению аналогичен пользовательскому (о настройке журнала аварий см. в п. 16.11). Записи журнала аварий идентичны по своему содержанию записям в пользовательском журнале (см. рисунок 17).

13 ЗАЩИТА ИНФОРМАЦИИ

13.1 ПЛК обеспечивает разграничение уровней доступа пользователя к параметрам:

– уровень 1 (пользователь) – включен по умолчанию, все параметры доступны только для чтения;

– уровень 2 (наладчик) – все параметры доступны для чтения, а параметры настройки доступны для изменения после ввода 8-значного пароля.

13.2 Пароль может состоять из цифр от 0 до 9, а также из букв A, B, C, D, E и F (кроме комбинаций «0000000» и «FFFFFFF» – они воспринимаются контроллером как отсутствие пароля).

13.3 С предприятия-изготовителя ПЛК выпускается без пароля. Методика по установке, изменению и сбросу пароля приведены в п. 17.1.

13.4 Если значение установленного пароля неизвестно, снять пароль можно только на предприятии-изготовителе при предоставлении письменного обращения собственника контроллера.

14 РЕЖИМЫ РАБОТЫ

ПЛК может находиться в одном из трех режимов функционирования: **Работа**, **Останов** или **Отладка**. Инструкции по смене режима функционирования ПЛК приведены в п. 17.2.

Во время эксплуатации контроллер должен находиться в режиме **Работа**. Переведенный в этот режим ПЛК после подачи на него питания автоматически начинает выполнять прикладную программу, загруженную в его энергонезависимую память. Управление входами, выходами, интерфейсами происходит в соответствии с прикладной программой.

Технологический режим **Отладка** предназначен для проверки прикладной программы, записанной в ПЛК. Управляет режимом наладчик в ПО «РОМБ-3».

Режим **Останов** является технологическим – используется при программировании ПЛК. В нем исполняются все системные функции, но прикладная программа не исполняется.

15 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ

Перед вводом ПЛК в эксплуатацию нужно:

- 1. Подключить к контроллеру питание (см п. 8.1).
- 2. Настроить дату и время через меню контроллера (см. п. 16.1).
- 3. Отключить от ПЛК питание минимум на 10 сек.

4. Подключить к контроллеру питание и проверить актуальные значения даты и времени. В случае их отображения – перейти к следующему пункту, в случае искажения – заменить батарею (методику см. в п. 18.2) и провести ввод в эксплуатацию с начала.

5. Отключить от ПЛК питание и установить перемычки на входы, выходы, интерфейсы CAN и RS-485 в соответствии со схемами из пунктов 7.4 – 7.9.

6. Соединить ПЛК с ПК (см. п. 8.2), подать питание на контроллер.

7. Запустить «РОМБ-3» на ПК и выполнить запись прикладной программы в соответствии с п. 5.6 Руководства пользователя ПВРТ.ПК.001.РП.

8. При необходимости – выполнить отладку прикладной программы в соответствии с п. 4.8 Руководства пользователя ПВРТ.ПК.001.РП.

16 НАСТРОЙКА И ПРОГРАММИРОВАНИЕ

16.1 Настройка календаря и часов

Дата и время настраиваются при помощи ПО «РОМБ-3» либо через меню контроллера.

Чтобы настроить работу календаря и часов с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 18, блок **RTC**), выбрать настраиваемый параметр (в примере на рисунке 18 – «**RTC_EN**») и ввести в отведенное поле (в примере на рисунке 18 выделено синим цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 16.

Рисунок 18 – Настройки календаря и часов

Таблица 16 – Настраиваемые параметры календаря и часов

Параметр	Описание	Формат*	Значения		
RTC_EN	Остановка отсчета времени	BOOL	0 – выключена;		
			1 – включена		
DATE	Текущая дата	DATE	ДД.ММ.ГГ		
TIME	Текущее время	TIME	ЧЧ:MM:CC		
* Подробнее	* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП				

Чтобы настроить календарь и часы через меню ПЛК, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Дата/Время* → *пункт меню из таблицы* 17 (подробнее о навигации по меню см. раздел 9).

Таблица 17 – Пункты меню для настройки работы календаря и часов

Параметр	Описание	Значение
Дата	Текущая дата	ДД.ММ.ГГ
Время	Текущая дата	ЧЧ:ММ:СС

16.2 Настройка дискретных входов

Работа дискретных входов настраивается в ПО «РОМБ-3». Для настройки параметра дискретного входа необходимо в создаваемом проекте найти блок, соответствующий настраиваемому входу (в примере, приведенном на рисунке 19, это вход **DI 1**), выбрать настраиваемый параметр (на рисунке 19 – «**Фильтр**») и ввести в отведенное поле (в примере на рисунке 19 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 18. В ПО «РОМБ-3» можно посмотреть сведения о параметрах, не нуждающихся в настройке – их описание и форматы приведены в таблице 19.

Основное о	кно				
🗏 🗳 🚖	1 🗄 🔜 📢 🕥 🥥	9 @ B	2° 1° °° × 🔪	+ X L [1 🔤 🐴
	1				
		H17 DI1			
	1				
	• Фильтр	Сост			
	• Антидреб	МгнЧа	аст		
	Период	СрЧас	т 🔳		
	10 Mill				
Nº	Имя	Короткое имя	Номер параметра	Размещение	Значени
- 1	Фильтр на входе	Фильтр	0202	ОЗУ	-

Рисунок 19 – Настройки параметров дискретного входа DI 1

Таблица	18 –	Настраиваемые	параметры	дискретных вх	одов

Параметр	Описание	Формат*	Значения	
Фильтр	Фильтр «антидребезга» на входе	BOOL	0 – выключен;	
			1 – включен	
Антидреб	Время «антидребезга» на входе, мс (актуально	UINT8	0 – 255	
	при включенном фильтре)			
Период	Период (интервал) усреднения входной частоты,	UINT16	0 – 65535	
	мс			
* Подробнее с	* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП			

Таблица 19 – Информационные параметры дискретных входов

Параметр	Описание	Формат*	Значения
Сост	Текущее состояние входа (обновляется при	BOOL	0 – неактивен;
	режиме опроса уровня входного сигнала)		1 – активен
МгнЧаст	Измеренная мгновенная частота, Гц	FLOAT	Число
СрЧаст	Измеренная средняя частота, Гц	FLOAT	Число
* Подробнее с	о форматах в п. 5.4 Руководства пользователя ПВР	Т.ПК.001.РП	

16.3 Настройка дискретных выходов

Дискретные выходы настраиваются в ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу дискретных выходов в ПО «РОМБ-3», необходимо в создаваемом проекте найти блок, соответствующий настраиваемому выходу (в примере, приведенном на рисунке 20, это выход **DO 1**), выбрать настраиваемый параметр (на рисунке 20 – «**DO_mode**») и ввести в отведенное поле (в примере на рисунке 20 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 20.

Основное о	кно				
🔲 🗳 全	12	1 20 10	° ° 🗡 🖊 + 🛛	× L 🗂 📟	4
		H11 DO1			
	 СостВых DO_mode DO_Freq PWM_FILL 				
<					
Nº 2	Имя Разрешить ШИМ (0/1)	Короткое имя DO_mode	Номер параметра 0301	Размещение ОЗУ	Значение -

Рисунок 20 – Настройки параметров дискретного выхода DO 1

Таблица 20 –	Настраиваемые	параметры	дискретных	выходов
•			· · ·	

Параметр	Описание	Формат*	Значения
DO_mode	Включение ШИМ на данном выходе	BOOL	0 – ШИМ выключен (выход
			работает в режиме ключа);
			1 – ШИМ включен (выход
			работает в режиме
			формирования ШИМ-сигнала)
DO_Freq	Заданная частота ШИМ, Гц (актуально	FLOAT	1.0 - 10000.0
	при значении «1» у параметра		
	«DO_mode»)		
PWM_FILL	Коэффициент заполнения ШИМ, %	FLOAT	0.0 - 100.0
	(актуально при значении «1» у		(не включая 0.0 и 100.0)
	параметра «DO_mode»)		
* Подробнее	е о форматах в п. 5.4 Руководства пользо	вателя ПВР	Т.ПК.001.РП

Изменение параметра **СостВых** (в меню контроллера – **Состояние**), характеризующего текущее состояние выхода, доступно только в режиме Отладка ПЛК при работе дискретного выхода в режиме ключа (о режимах работы ПЛК см. в разделе 14). Параметр может принимать значение 0 (сигнал отсутствует) или 1 (сигнал есть).

Чтобы настроить работу дискретных выходов через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Дискрет.вых.* → *DOUT X (где X* – *порядковый номер дискретного выхода)* → *пункт меню из таблицы 21* (подробнее о навигации по меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 21, пользуясь клавишами управления и информацией таблицы 11.

Таблица	21 — Г	Јункты меню	лля настройки	паботы	лискретных	выхолов
таолица	<u> </u>		для пастроики	pacorbi	циокротных	выходов

Пункт меню	Описание	Значения
Ч-та, Гц	Заданная частота ШИМ, Гц (актуально при значении «1» у параметра «ШИМ вкл.»)	1.0 – 10000.0
К зап, %	Коэффициент заполнения ШИМ, % (актуально при значении «1» у параметра «ШИМ вкл.»)	0.0 – 100.0 (не включая 0.0 и 100.0)
ШИМ вкл.	Включение ШИМ на данном выходе	0— выход работает в режиме ключа; 1— выход работает режиме формирования ШИМ-сигнала.

16.4 Настройка аналоговых входов

Аналоговые входы настраиваются при помощи ПО «РОМБ-3» либо через меню прибора.

При настройке работы аналоговых входов с помощью ПО «РОМБ-3» нужно задать тип измерений на каждом входе. Для этого необходимо в создаваемом проекте найти блок, соответствующий настраиваемому входу (в примере, приведенном на рисунке 21, это вход **AIN 1**), выбрать настраиваемый параметр **AI-Type** (см. рисунок 21) и ввести в отведенное поле (в примере на рисунке 21 подсвечено зеленым цветом и обведено в красную рамку) значение «1» или «2» (1 – измерение тока; 2 – измерение сопротивления).

Рисунок 21 – Настройки параметров аналогового входа AIN 1

ПЛК преобразует измеренные значения силы тока и/или сопротивления в практически необходимые с помощью соответствующих алгоритмов (подробнее см. в Справочнике алгоритмов ПВРТ.421243.001 СА).

Параметры **RBx** и **AI** задаются предприятием-изготовителем и не требуют пользовательской настройки. **RBx** предназначен для отображения в формате FLOAT входного сопротивления (номинала резистора канала), а **AI** – для отображения в формате FLOAT значений, измеренных на аналоговом входе.

При настройке работы аналоговых входов через меню прибора нужно выбрать тип измерения. Для этого необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Аналог.вх.* → *AIN X (где X – порядковый номер аналогового входа)* → *Тип* (подробнее о навигации по меню см. раздел 9) и установить нужный тип (I, mA – измерение тока; R, Oм – измерение сопротивления).

16.5 Настройка аналоговых выходов

Аналоговые выходы настраиваются при помощи ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу аналогового выхода с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти блок, соответствующий настраиваемому выходу (в примере, приведенном на рисунке 22, это выход **AOUT 1**), выбрать настраиваемый параметр (на рисунке 22 – «**OutType**») и ввести в отведенное поле (в примере на рисунке 22 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 22.

1			
	H6 AOUT 1		
□ OutType			
Value			
Range			
Ka			
Kb			
		10	

Рисунок 22 – Настройки параметров аналогового выхода AOUT 1

Параметр	Описание	Формат*	Значения	
OutType	Тип выхода	UINT8	0 – токовый;	
			1 – напряженческий	
Range	Диапазон выходного значения тока	FLOAT	4.0 – 20.0 мА	
	(актуально при токовом типе выхода)			
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП				

Таблица 22 – Настраиваемые параметры аналоговых выходов

Изменение параметра **Value**, характеризующего текущее значение на выходе, доступно только в режиме Отладка ПЛК (о режимах работы контроллера см. в разделе 14). Параметр может принимать значение в диапазонах от 4 до 20 мА или от 0 до 10 В в зависимости от типа выхода (токовый или напряженческий).

Параметры **Ка** и **Кb** (формата FLOAT), представляющие собой калибровочное значение наклона и калибровочное значение смещения соответственно, задаются предприятиемизготовителем и не требуют пользовательской настройки.

Чтобы настроить работу аналоговых выходов через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Аналог.вых.* → *AOUT X (где X* – *порядковый номер аналогового выхода)* → *пункт меню из таблицы 23* (подробнее о навигации по меню см. раздел 9). Для каждого параметра нужно задать значение в соответствии с таблицей 23, пользуясь клавишами управления и информацией таблицы 11.

Параметр	Описание	Значения
Тип	Тип выхода	0 — токовый; 1 — напряженческий
Знач.	Текущее значение, заданное выходу (зависит от типа выхода)	От 4.0 до 20.0 мА или от 0.0 до 10.0 В

Таблица 23 – Пункты меню для настройки работы аналоговых выходов

16.6 Настройка CAN

Интерфейс CAN настраивается в ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу интерфейса CAN с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 23, блок **CAN**), выбрать настраиваемый параметр (на рисунке 23 – «**CAN-ID**») и ввести в отведенное поле (в примере на рисунке 23 подсвечено синим цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 24.

Основное он	кно	12 Ve Ve .e	* 🖊 + X L	. 🛅 🚔 🔺	
	1	1 according			
		H2 CA	N		
	CAN	-ID			
	CAN	-SP			
<					
Nº 1	Имя Номер прибора в сети CAN	Короткое имя CAN-ID	Номер параметра 0400	Размещение ОЗУ	Значение

Рисунок 23 – Настройки параметров САЛ

Параметр	Описание	Формат*	Значения		
CAN-ID	Заданный сетевой номер	UINT8	0 – 254		
	прибора на CAN-шине				
CAN-SP	Заданная скорость обмена в	UINT16	20, 50, 100, 150, 250, 300, 500 или 1000		
	сети CAN, кБит/с				
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП					

Чтобы настроить работу интерфейса CAN через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки*→ *CAN* → *пункт меню из таблицы 25* (подробнее о навигации по меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 25, пользуясь клавишами управления и информацией таблицы 11.

Таблица 25 – Пункты меню для настройки работы интерфейса CAN

Параметр	Описание	Значения
CAN номер	Заданный сетевой номер прибора на CAN-шине	0 – 254
Скорость	Заданная скорость обмена в сети CAN, кБит/с	20, 50, 100, 150, 250, 300, 500 или 1000

16.7 Настройка RS-485

Интерфейс RS-485 настраивается при помощи ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу интерфейса RS-485 с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 24, блок **RS485**), выбрать настраиваемый параметр (на рисунке 24 – «**RS_SPEED**») и ввести в отведенное поле (в примере на рисунке 24 подсвечено синим цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 26.

Основное о	кно	004	@ []}	20 10	.* .* /	(+ ×	: 1 📑 👄	2
	1-4 (0.2		- 1					-
		1						
		1	H3 R	S485				
	_	PARITY						
		STOP						
		WordSize						
	-	ByteTime						
	4	- 24				-		
Nº 1	Имя Скорость	обмена, кБод	Kopotk RS_SPE	ое имя ED	Номер пар 0405	аметра	Размещение ОЗУ	Значени

Рисунок 24 – Настройки параметров RS-485

Таблица 26 – Настраиваемые параметры интерфейса RS-485

Параметр	Описание	Формат*	Значения	
RS_SPEED	Скорость работы интерфейса RS-485, кБит/с	UINT32	1200, 2400, 4800, 9600,	
			19200, 38400, 57600 или	
			115200	
PARITY	Контроль четности	UINT8	0 – нет;	
			1 – четный;	
			2 – нечетный	
STOP	Количество стоп-бит	UINT8	1 или 2	
WordSize	Размер данных, бит	UINT8	8	
ByteTime	Межбайтовый интервал, мс	UINT8	0 – 255	
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП				

Чтобы настроить работу интерфейса RS-485 через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *RS485* → *пункт меню из таблицы 27* (подробнее о навигации по меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 27, пользуясь клавишами управления и информацией таблицы 11.

Параметр	Описание	Значения
Скорость	Заданная скорость обмена в сети RS-485, кБит/с	1200, 2400, 4800, 9600, 19200, 38400, 57600 или 115200
Четность	Контроль четности	«нет», «четный» или «нечет- ный»
Стоп бит	Заданное количество стоп-бит	1 или 2

Таблица 27 – Пункты меню для настройки работы интерфейса RS-485

16.8 Настройка Ethernet

Изменить настройки ПЛК в сети Ethernet можно при помощи ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу интерфейса Ethernet с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 25, блок **Сет.наст**), выбрать настраиваемый параметр (на рисунке 25 – «**IP**») и ввести в отведенное поле (в примере на рисунке 25 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 28.

Рисунок 25 – Настройки параметров Ethernet

Параметр	Описание	Формат*	Значения	
IP	ІР-адрес	UINT32		
Subnet	Маска подсети	UINT32	Предоставляет сетевой	
Gate	Адрес шлюза	UINT32	администратор ЛВС	
FTPORT	Номер порта по протоколу FT 1.2	UINT16	пользователя	
MBPORT	Номер порта по протоколу Modbus	UINT16		
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП				

Таблица 28 – Настраиваемые параметры интерфейса Ethernet

Чтобы настроить работу интерфейса Ethernet через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Ethernet* → *пункт меню из таблицы* 29 (подробнее о навигации по меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 29, пользуясь клавишами управления и информацией таблицы 11.

Таблица 29 – Пункты меню для настройки работы интерфейса Ethernet

Параметр	Описание	Значения
IP	ІР-адрес	
Subnet	Маска подсети	Предоставляет сетевой администратор ЛВС
Gate	Адрес шлюза	
FT port Номер порта по протоколу FT 1.2		пользователя
MODBUS port	Номер порта по протоколу Modbus	

16.9 Haстройка Modbus

Работа Modbus настраивается при помощи ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу Modbus с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти блок **MbSlave** (см. рисунок 26), выбрать настраиваемый параметр (на рисунке 26 – «**Mb_Addr**») и ввести в отведенное поле (в примере на рисунке 26 подсвечено синим цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 30.

Рисунок 26 – Настройки параметров Modbus

Параметр	Описание	Формат*	Значения
Mb_Addr	Modbus-адрес	UINT8	1 – 254
MbEnable	Режим «Slave»	UINT8	0 – выключен;
			1 – включен.
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП			

Чтобы настроить работу Modbus через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Modbus* → *пункт меню из таблицы 31* (подробнее о навигации по меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 31, пользуясь клавишами управления и информацией таблицы 11.

Таблица 31 – Пункты меню для настройки работы протокола Modbus

Параметр	Описание	Значения
Адрес	Modbus-адрес	1 – 254
Ведомый	Режим Slave	«Нет» или «Да»

16.10 Настройка пользовательского и циклического меню

ПЛК предусматривает возможность настройки пользовательского и циклического меню с помощью ПО «РОМБ-3». Методики настройки меню приведены в разделе 4.9 Руководства пользователя ПВРТ.ПК.001.РП.

16.11 Настройка пользовательского журнала и журнала аварий

Последовательность действий, необходимых для настройки пользовательского журнала и журнала аварий, приведена в разделе 4.10 Руководства пользователя ПВРТ.ПК.001.PП.

16.12 Настройка меню аварий

Для добавления события в меню аварий данное событие нужно добавить в Журнал аварий (подробнее о нем см. в п. 16.11).

16.13 Настройка дисплея

ПЛК предусматривает возможность настройки подсветки дисплея при помощи ПО «РОМБ-3» либо через меню прибора.

Чтобы настроить работу дисплея с помощью ПО «РОМБ-3», необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 27, блок **Система**), выбрать настраиваемый параметр (в примере на рисунке 27 – «**LightEN**») и ввести в отведенное поле (в примере на рисунке 27 выделено синим цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 32.

Рисунок 27 – Настройки параметров дисплея

Таблица 32 – Настраиваемые параметры дисплея

Параметр	Описание	Формат*	Значения
LightEn	Текущее состояние подсветки дисплея	BYTE (HEX)	00 – запрещена; 01 – разрешена
LightTim	Заданное время работы подсветки, мс	UINT16	0 – 65535
* Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП			

Чтобы настроить работу дисплея через меню прибора, необходимо выполнить следующий путь по пунктам меню: *Настройки* → *Дисплей* → *пункт меню из таблицы 33* (подробнее о навигации по пунктам меню см. раздел 9). Для каждого из этих пунктов нужно задать значение в соответствии с таблицей 33.

Таблица 33 – Пункты меню для настройки работы дисплея

Пункт меню	Описание	Значения
Подсветка разрешена	Текущее состояние подсветки дисплея	0 – запрещена; 1 – разрешена
Т подсветки, мс	Заданное время работы подсветки, мс	0 – 65535 (по умолчанию – 3600)

17 ЭКСПЛУАТАЦИЯ

17.1 Установка, изменение и сброс пароля

Изменить и отключить пароль можно, только зная его (подробнее о пароле см. раздел 13).

17.1.1 Чтобы **установить пароль**, необходимо выполнить следующий путь по пунктам меню контроллера: *Система* → *Пароль* → *Веод пароля* (подробнее о навигации по меню см. раздел 9). На дисплее откроется окно для ввода нового 8-значного пароля. Введите нужные цифры и буквы, пользуясь описанием функций клавиш в таблице 11 в разделе 9, и нажмите «ОК». Пароль установлен.

17.1.2 Чтобы **изменить установленный пароль**, необходимо выполнить следующий путь по пунктам меню контроллера: *Система* → *Пароль* → *Ввод пароля* (подробнее о навигации по меню см. раздел 9). На дисплее откроется окно для ввода текущего пароля. Введите нужные цифры и буквы, пользуясь описанием функций клавиш в таблице 11 в разделе 9, и нажмите «OK». Введите новый пароль и подтвердите ввод нажатием клавиши «OK». Пароль изменен.

17.1.3 Чтобы **отключить установленный пароль**, необходимо выполнить следующий путь по пунктам меню контроллера: *Система* → *Пароль* → *Сброс пароля* (подробнее о навигации по меню см. раздел 9). На дисплее откроется окно для ввода текущего пароля. Введите нужные цифры и буквы, пользуясь описанием функций клавиш в таблице 11 в разделе 9, и нажмите «OK». Пароль отключен.

17.2 Смена режима работы

Для смены режима необходимо знание пароля уровня «Наладчик» (см. раздел 13).

ПЛК предусматривает два способа перехода в режимы **Останов** и **Работа** – с помощью ПО «РОМБ-3» и непосредственно через меню контроллера кнопками управления. Активация режима **Отладка** возможна только в ПО «РОМБ-3».

Методики смены режима работы контроллера с помощью ПО «РОМБ-3» приведены в разделе 5.7 Руководства пользователя ПВРТ.ПК.001.РП.

Чтобы сменить режим работы через меню ПЛК, необходимо перейти в пункт меню «Старт/стоп» (подробнее о структуре меню см. в разделе 10), а затем выполнить следующие действия в зависимости от цели.

Для активации основного рабочего режима нужно выбрать пункт «Старт», нажать клавишу «ОК» и ввести пароль, если он установлен (методика ввода пароля приведена в п. 17.1). Значок «■» в строке статуса на дисплее сменится на «►».

Для перевода ПЛК в технологический режим Останов нужно выбрать пункт «Стоп», нажать клавишу «ОК» и ввести пароль, если он установлен (методика ввода пароля приведена в п. 17.1). Значок «▶» в строке статуса на дисплее сменится на «■».

39

17.3 Работа с дополнительными модулями

Для целей расширения количества измерительных каналов, количества дискретных входов/выходов, для передачи данных по различным интерфейсам ПЛК может быть подключен к другим контроллерам серий ТЭКОН-20 (Т-20) и ТЭКОН-25 (Т-25) по шине CAN в соответствии с рисунком 10 (п. 8.7).

18 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

18.1 Общие указания

18.1.1 При выполнении работ по техническому обслуживанию контроллера следует соблюдать меры безопасности, изложенные в разделе 6.

18.1.2 Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в год и включает в себя выполнение следующих операций:

 - очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;

- проверку качества крепления контроллера на DIN-рейке;

– проверку состояния клеммных соединений (выполнение протяжки – при необходимости).

18.2 Замена элемента питания

Для замены батареи необходимо:

- отключить питание контроллера и всех подключенных к нему внешних устройств;
- отделить от ПЛК съемные части клеммников и снять контроллер с DIN-рейки;

 отверткой с плоским шлицем подцепить край боковой поверхности крышки ПЛК под защелкой у основания корпуса и аккуратно (чтобы не повредить шлейф клавиатуры, расположенный под крышкой) приподнимать отвертку, пока край крышки не отделится от основания корпуса (см. рисунок 28);

Рисунок 28 – Открытие защелки

- повторить эти же действия с защелкой в другой торцевой стенке корпуса;
- отложить крышку в сторону так, как показано на рисунке 29;

Рисунок 29 – Откручивание винтов

 отверткой открутить два винта (на рисунке 29 они обозначены цифрами «1» и «2»), снять верхнюю плату;

- используя изолированный инструмент, извлечь разрядившуюся батарею;

 вставить новую батарею так, чтобы её «плюс» был направлен вниз, от снятой платы (см. рисунок 30);

- вернуть на место верхнюю плату и закрепить её винтами;

 сборку корпуса и установку контроллера на место осуществлять в обратном порядке.

Примечание – Необходимо использовать батарею только указанного в разделе 10 типа. При несоблюдении полярности возможен выход из строя батареи и контроллера. После сборки и включения контроллера убедитесь, что показания часов актуальны (см. п. 4 алгоритма, приведенного в разделе 15). При необходимости перенастройте часы (см. п. 16.1).

Рисунок 30 – Замена батареи

19 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

19.1 Транспортирование упакованного ПЛК должно производиться при температуре окружающего воздуха от -50 до +50°С в крытых транспортных средствах всеми видами транспорта, авиатранспортом – только в герметизированных и отапливаемых отсеках в соответствии с ГОСТ Р 52931.

19.2 Хранение ПЛК должно производиться в соответствии с условиями хранения ЖЗ по ГОСТ 15150.

20 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

20.1 Изготовитель гарантирует соответствие ПЛК требованиям технических условий ПВРТ.421243.001 ТУ при условии соблюдения потребителем режимов работы, правил эксплуатации, транспортирования и хранения, изложенных в настоящем руководстве.

20.2 Гарантийный срок хранения – 6 месяцев с даты изготовления.

20.3 Гарантийный срок эксплуатации – 18 месяцев со дня ввода ПЛК в эксплуатацию, но не более 24 месяцев со дня изготовления.

21 УТИЛИЗАЦИЯ

21.1 Батарейка (используемая для работы часов) при утрачивании своих потребительских свойств относится к отходам II класса опасности в соответствии с Федеральным классификационным каталогом отходов. Утилизацию батарейки необходимо производить в специальный пункт сбора или в организацию, занимающуюся утилизацией данного класса отходов.

21.2 Остальные материалы контроллера не представляют опасности для жизни и должны утилизироваться отдельно по группам: пластмассовые элементы, металлические крепежные элементы.

Приложение А

Внешний вид ПЛК-25-01

Рисунок А.1 – ПЛК-25-01, вид спереди

Рисунок А.2 – ПЛК-25-01, вид сбоку

Приложение Б

Назначение контактов ПЛК-25-01

Наименование	Назначение
DI1-DI6	Дискретные входы
CM1	Общий контакт дискретных входов DI1-DI3
CM2	Общий контакт дискретных входов DI4-DI6
AIN1-AIN2	Универсальные аналоговые входы
RH1	Джампер переключения входа AIN1 в режим измерения тока (4-20 мА)
RH2	Джампер переключения входа AIN2 в режим измерения тока (4-20 мА)
TRM1	Джампер подключения терминального резистора интерфейса eCAN
eCAN	Клеммы подключения сервисного интерфейса САN
RS485	Клеммы подключения интерфейса RS-485
TRM2	Джампер подключения терминального резистора интерфейса RS-485
DO1-DO6	Дискретные выходы
Un1	Клеммы подключения питания дискретных выходов DO1-DO3
Un2	Клеммы подключения питания дискретных выходов DO4-DO6
AO1-AO2	Аналоговые выходы 4-20 мА, 0-10 В
RH3	Джампер переключения выхода АО1 в режим генерации напряжения 0-10 В
RH4	Джампер переключения выхода АО2 в режим генерации напряжения 0-10 В
Uп3	Клеммы подключения питания аналоговых выходов АО1-АО2
TRM3	Джампер подключения терминального резистора САN-интерфейса
CAN	Клеммы подключения основного CAN-интерфейса
Uпит	Клеммы подключения питания контроллера

Приложение В

Гальваническая развязка в ПЛК-25-01

Рисунок В.1 – Схема гальванической развязки в ПЛК-25-01 (c Ethernet)

Приложение Г

Структура системного меню ПЛК-25-01